Difference between revisions of "StatsWAP2009Aug07"

From IACL
Jump to navigation Jump to search
Line 2: Line 2:
  
 
* Brian Caffo's websiite: http://www.biostat.jhsph.edu/~bcaffo/  
 
* Brian Caffo's websiite: http://www.biostat.jhsph.edu/~bcaffo/  
 +
* Series Home: http://putter.ece.jhu.edu/StatsWAP
  
 
== Resources ==
 
== Resources ==
Line 14: Line 15:
 
** confounding effects
 
** confounding effects
 
** interactions
 
** interactions
 +
** can generalize to discrete and/or multivariate responses (logistic regression, etc.)
 +
* Example bases
 +
** linear
 +
** polynomial (Taylor series expansion)
 +
*** why not?
 +
*** it works... sort of
 +
*** not good for smoothing: not "localized", not "parsimonious" ==> takes a lot of terms to get non-exactly polynomial
 +
** See slide on general functions for tips on selected basis sets.
 +
*** wavelet bases - smooth trends and spikes
 +
**** can be "same" as wavelet transform, slowly
 +
*** trigonometric (Fourier) - "frequency concept"
 +
**** can be "same" as Fourier transform, slowly
 +
*** Spline bases - general smoothing
 +
**** We'll talk about these today. Good for general smoothing. General purpose, but do not preserve spikes.
 +
* Pick the basis for the eventual goal.

Revision as of 19:26, 7 August 2009

Nonlinear Regression Models

Resources

  • Slides will be available here
  • R-code will be available here

Notes

  • Not covered: kernel smoothing, local weighting, moving averages, binning, loess (local estimation) etc.
  • Non-parametric regression -
    • can factor in <math>y=f(x)+other stuff </math>
    • confounding effects
    • interactions
    • can generalize to discrete and/or multivariate responses (logistic regression, etc.)
  • Example bases
    • linear
    • polynomial (Taylor series expansion)
      • why not?
      • it works... sort of
      • not good for smoothing: not "localized", not "parsimonious" ==> takes a lot of terms to get non-exactly polynomial
    • See slide on general functions for tips on selected basis sets.
      • wavelet bases - smooth trends and spikes
        • can be "same" as wavelet transform, slowly
      • trigonometric (Fourier) - "frequency concept"
        • can be "same" as Fourier transform, slowly
      • Spline bases - general smoothing
        • We'll talk about these today. Good for general smoothing. General purpose, but do not preserve spikes.
  • Pick the basis for the eventual goal.