Difference between revisions of "VICCE"

From IACL
Jump to navigation Jump to search
Line 48: Line 48:
 
{{h4|Install packages}}
 
{{h4|Install packages}}
 
To install the required packages, run <code>conda env create --name pytorch --file=pytorch_env.yml<\code>
 
To install the required packages, run <code>conda env create --name pytorch --file=pytorch_env.yml<\code>
 +
 +
{{h4|Training/Evaluation}}
 +
If you have prepared registered pairs of Spectralis and Cirrus scans in "data/train/", you can use
 +
<code>python train.py --output vicce<\code>

Revision as of 15:54, 30 March 2021

<meta name="title" content="VICCE"/>

Variational Intensity Cross Channel Encoder for Unsupervised Vessel Segmentation on OCT Angiography (VICCE)

Variational intensity cross channel encoder is an vessel segmentation algorithm for 2D OCT angiography images. The associated publication is:

Software

Coming soon.


Instructions

If you have questions regarding the method or software, please contact Yihao Liu

Prepare data

The data loader requires pairs of Spectralis and Cirrus scans as input. Name the Spectralis scan as "H.png" stand for Heidelberg and the Cirrus scan as "Z.png" for Zeiss, also provide a mask image "M.png" to outline the common field of view of the Spectralis scan and Cirrus scan. Those three images are stored in subfolder inside "data/train/" and "data/val/". The directory structure of the whole preject is as follows:

   ├──datasets
   │     ├──__init__.py
   │     └── vicce_dataset.py
   ├──train.py
   ├──evaluate.py
   ├──params.json
   ├──pytorch_env.yml
   ├──model
   │    ├──__init__.py
   │    ├──sampling.py
   │    ├──unet.py
   │    └──vicce_model.py
   |
   ├──utils
   │    ├──__init__.py
   │    └──utils.py 
   |    
   └──data
        ├──train
        |   └──subject_*
        |         ├── H.png
        |         ├── Z.png
        |         └── M.png
        └──val
            └──subject_*
                  ├── H.png
                  ├── Z.png
                  └── M.png

Install packages

To install the required packages, run conda env create --name pytorch --file=pytorch_env.yml<\code>

Training/Evaluation

If you have prepared registered pairs of Spectralis and Cirrus scans in "data/train/", you can use python train.py --output vicce<\code>